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AbslracL A fractional differenlial equation is sludied and its application for describing 
diffusion on random fractal SINCIU~ is mnsidered. It represenls the simples1 general- 
ization of lhe fractional diffusion equation valid in Euclidean syslems. The solution of 
the fraclional equation in one dimension is dirussed. and mmpared with mac1 resulls 

diffusion quation on fractals. In higher dimensions, it correctly describs the asymptotic 
valing behaviour of lhe probability density function on random framls, as obtained 
recenlly by using ral ing arguments and mct enumeralion mlculaliom for the infinite 
pemolation cluster at criticality. 
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1. Introduction 

'Ransport phenomena in complex systems such as random fractal structures exhibit 
many anomalous features which are qualitatively different from the standard be- 
haviour characteristic of regular systems [I, 21. 

In the case of fractals, such anomalies are due to the spatial complexity of the 
substrate which imposes geometrical constraints on the transport process on all length 
scaies (seif-simiiarityj. These constraints may be aiso seen as temporai correiations 
existing on all time scales. In the case of diffusion, for instance, these correlations 
lead to an anomalous behaviour of the mean-square displacement of a Brownian 
particle 

where d, > 2 is the anomalous diffusion exponent, and to a non-Gaussian shape 
for the average density function P( T ,  t), describing the probability that the Brownian 
particle is found at time t at a distance T from its starting p i n t  [l, 21 

P ( r , t )  t - d f / d w  exp[-constant(r/R)"] (1.2) 

when r / R  >> 1 and t - m, where U = d,/(d,- 1) and d, is the fractal dimension. 
Since 1 < U < 2, the shape described by (1.2) is called a stretched Gaussian [3-51. 

The asymptotic result (1.2) is exact for diffusion on topologically linear fractals 
such as paths generated by self-avoiding random walks (SAW) 111. It is obtained 
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by writing P(. , t )  as the convolution of the probability density P(1,2), that the 
random walker is at chemical (topological) distance 1 [l] along the path from the 
origin, with the structural function @ ( ~ , 1 )  giving the probability that two p i n t s  at 
chemical distance 1 on the chain are at Pythagorian metric distance T. Since P(1 , t )  
is a Gaussian for linear fractals and the asymptotic behaviour of @(r-,l) is known 
exactly for SAWS [6], a simple calculation based on the steepest descent method yields 
(1.2). The same result is obtained analytically for the infinite percolation cluster at 
criticality, since the structural function @ ( ~ - , 1 )  for percolation obeys a scaling form 
analogous to SAWS and P(1 , t )  is well described by a stretched Gaussian similar to 
(1.2) [l, 21. Extensive numerical calculations support these behaviours for @(r,1) 
[l, 7] and P(1, t )  [3-51 for percolation. Other analytical approaches based on scaling 
arguments and the Green function method also yielded (1.2) [SI. Moreover, (1.2) 
works equally well for describing the envelope decay of P(T, 2) on deterministic 
fractals such as the Sierpinski gasket [ l ,  91, thus it appears to be of general validity. 

In view of the possible general validity of (1.2), one is tempted to search for a 
generic approach describing diffusion on fractals. Simple modifications of the standard 
diffusion equation valid in Euclidean systems have been proposed in the past [10,11] 
for describing the average behaviour of P ( T ,  1 )  (and of P(1, t)) on fractals, in which 
the characteristic anomalous behaviour (1.1) is explicitely taken into account. Such 
‘standard‘ diffusion equations can be solved exactly, but yield the result U = d, 
for P ( r ,  t ) ,  in contrast to the generally accepted stretched Gaussian behaviour (1.2). 
Thus, the problem of formulating a diffusion equation on fractals yielding (1.2) within 
an as simple as possible scheme is still open. 

In this work, we pursue this ‘macroscopic’ approach further by discussing an 
alternative method for reformulating the diffusion equation on fractals in a very 
simple way within the framework of fractional calculus [12]. As in previous works 
[lo, 111, our approach is aimed at describing the average behaviour of the physical 
quantities on fractals only. This means that the intrinsic singular character of a 
fractal structure leading to a lack of smoothness for P(T, 2 )  for a single configuration 
is averaged out, and the geometric and transport anomalies of the fractal are simply 
represented hy the exponents d, and d,, respectively. 

The idea of using fractional calculus as a mathematical description of dynamical 
processes in complex media is not completely new. Electrochemistry has been so 
far the most fertile field of application of fractional calculus, as in the study of the 
AC response of rough electrodest. After the significant contribution of Oldham [14] 
regarding the mathematical developments of fractional calculus in electrochemistry, 
interesting results for complex RC networks were obtained by Jacquelin [15]. Le 
Mehaute proposed a fractional constitutive equation for describing eansfer processes 
in fractal media [16]. His idea of representing the temporal anomalies in the transfer 
processes by a convolutional constitutive equation between fluxes and driving forces 
is interesting, but the approach lacks a clear physical meaning and cannot be applied 
to the more general problem of diffusion on fractals. 

This paper is organized as follows. In section 2, we briefly review the application 
of fractional calculus to standard Brownian motion. In section 3, we discuss one- 
dimensional fractional Brownian motion and the extent to which it can be described 

t 7he frequency behaviour of the impedance Z ( w )  of electrochemica eletdes is well d s c n b e d  by the 
relation Z ( w )  - l / w T ,  with I) < 1. ?be a r r e n t  vallage relation is given in the frequency domain by 
I ( w )  = V ( w ) / Z ( w ) ,  which implies I ( 1 )  - d ~ V ( t ) / d f ~  (see e.g. [U]). 
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by a fractional differential equation. In section 4, a detailed analysis of the relaxation 
function corresponding to the one-dimensional fractional equation k given and its 
analogy with the electrochemical response of rough electrodes k discussed. In sec- 
tion 5, we analyse the standard diffusion equation for fractals [lo], and derive the 
corresponding fractional equations. In section 6, a one-parameter family of fractional 
differential equations h developed, which reproduces the asymptotic behaviour of 
fractional Brownian motion and the standard model of section 5 exactly. An approx- 

k then proposed and its solutions discussed. In section 7, some concluding remarh 
are presented. 

imstp o ~ n _ ~ c i n n  fnr the h.slrt:nn~l A:#. ,~:nn nnnso+:nn .ml:A fnr h n m n n a n m n . m  h.nrtn1r 
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. 2. Fhwtional calculus and standard Brownian motion 

Let us briefly summarize the basic ideas of fractional calculus which are illustrated 
here for standard Brownian motion in one dimension [12]. In the standard approach 
to diffusion, the starting point is the continuity equation 

d 
d t  - M ( r ,  t )  = -I( r, 1) 

where M ( r ,  1 )  = s,' d r  P ( r ,  t )  and I ( ? ,  t )  is the total probability current at distance 
r from the origin. Here, the normalization condition M ( c u , t )  = 1 for P ( r , t )  has 
been used. Equation (2.1) must be supplemented by a constitutive equation relating 
the current to P(r , t ) .  This is achieved by defining a second quantity j ( r , t ) ,  which 
we denote as the radial probability current, as 

where Do is the diffusion coefficient. Identifying I with j ,  (2.2) is traditionally 
denoted as the first Fick's law, which substituted into (2.1) (in its differential form) 
leads to the well known diffusion equation for P(r , t ) ,  whose solution k a Gaussian. 
Denoting by 

m 

P ( r , s )  = dt exp ( - s t )P( r , t )  

the Laplace transform of P(r , t ) ,  P ( r , s )  = ( l / * ) e x p ( - r a ) ,  and using 
it in (2.2) one easily obtains 

j ( r , s )  = Jsis;;P(r,s)  (2.3) 

where i(r, s) is the Laplace transform of j( r ,  1 ) .  According to the definition of a 
fractional derivative (see the appendix), (2.3) can be written in the time domain [12] 
as 



m 
where 
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which, together with the constitutive equation ( 2 4 ,  yields 

(2.4) 

Quation (2.4) is the fractional calculus version of the standard diffusion equation in 
one dimension. It relates the radial probability current, and through the constitutive 
equation (2.2) the radial derivative of P ( r , t ) ,  to the fractional time derivative of 
order of P ( r ,  1 ) .  In the following, we consider the applicability of fractional calculus 
to non-standard Brownian processes. We start with the known case of fractional 
Brownian motion. 

' 

3. hct ional  Brownian motion 

Fractional Brownian motion (FBM) is the simplest mathematical model of a Gaussian 
stochastic process (random walk) whose variance does not scale linearly with time 
[17]. Its probability density function PFBM(z, 1 )  is defined, in one dimension, by [17] 

where 1 ,< d, < CO characterizes the time evolution of the mean-square displacement 
of the FBM, ( z Z ( t ) )  = 2Dt2Id - ,  where D is a constant. In the following, we will 
only consider the diffusion regime 2 < d, < CO. 

According to its original definition [17], FBM can be described as an integral 
transform of Brownian motion (BM) 

where zFBM(t) and zBM(t) are the positions of the particle undergoing the FBM and 
BM processes, respectively. The kernel IC( t - T )  expressed by 

resembles the singular kernel in the definition of fractional derivatives (see the ap- 
pendix). It seems interesting then, to compare the FBM results with the solution 
P( I, t )  of the extraordinary (fractional) differential equation 

which is the natural generalization of (2.4) to the case d, > 2. 
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Indeed, the solution of (3.2) leads to ( x 2 ( t ) )  - t2Id. .  Moreover, the m"n 
probability P( 0 , t )  for the initial condition P( z,O) = 6( 2) and the whole hierarchy 
of moments M ,  = ( z k ( t ) )  have the same time dependence. as for the FBM. 'Ib show 
this, we consider the Laplace transform P(z,s) in (3.2) (see the appendix) and 
obtain 

A simple integration yields, 

P(z, s)  = Q(s)exp(-s'/d-l%l/A) (3.3) 

where Q ( s )  is determined by the normalization condition J-wwdz P ( z , t )  = 1, 

It is easy to show from (3.3) that  P ( 0 , t )  - t - ' f d * .  From (3.1), one has 

and from (3.3) we obtain, 

with M 2 , + ' ( t )  = M f : - ( t )  = 0. Notice that (3.4) and (3.5) coincide when d, = 2 
and AZ = D.  

From these results, we see that the propcsed fractional equation (3.2) displays 
scaling properties similar to those of the FBM (hierarchy of moments and return prob- 
ability). Nevertheless, the statistical features of the FBM and the stochastic process 
described by (3.2) are quite different. This c m  be seen by comparing the momens 
(3.4) and (3.5). which imply that P ( z , t )  # PFBM(z, t ) .  As we will see in section 6, 
P(z,f) has a different asymptotic decay than PFBM(z,l). The difference between 
the two processes is also manifested by studying the characteristic functions P(k,  t )  
and PFBM( IC, t )  as described later. 

4. Characteristic function end relaxation 

The characteristic function P (  12, t )  is defined as the Fourier transform of P( z, t ) ,  
._ 

P ( k , t )  = /-,dz exp(-ikz)P(z,t) (4.1) 

where k 2 0. P(k, t )  is known as the intermediate scattering function in the theory 
of liquids [lS] and represents the correlation of density-density fluctuations of wave- 
vector k in the fluid. Its decay in time describes the relaxation of density fluctuations 
of wavevector k to equilibrium. 
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The characteristic function P( k, t )  corresponding to the rYactional equation (3.2) 
can be evaluated from the hierarchy of moments { M , , ( t ) }  = { ( ~ " ( t ) ) }  given in 
(3.5). It can be shown that 

P ( k , t )  = "' ,_(A 2 k 2 t 2/d. ) 

where 

The series (4.3) is absolutely convergent since, for large n, 

where U,(.) = ( - x ) " / r ( Z n / d ,  + 1). For d, = 2, q 2 ( x )  = exp(-x). 

transform of (3.3), and obtain 
Tb derive the asymptotic behaviour of Qdw for d, > 2, we consider the Fourier 

(4.4) 

This can be expressed in terms of the universal function Q d - ( z ) ,  which satisfies the 
integral equation 

where x = A2k2s-2/d-.  From (4.5). we find that for x - 03 and d, > 2 

" d , ( 2 )  U l/" (4.6) 

while when d, = 2, Q 2 ( x )  = exp(-x)  in accordance with (4.3). Thus, for the 
anomalous case d, > 2 we obtain the power law decay 

:.. a ,...I_ *-. .,. .I.̂ ".-n."I...,, -....,........:̂ I A ̂ ^^.. ̂I.̂-̂ -.-- :".:- ^C .I.̂  -., ,.?I 
"I W , I I I ' l . D L  L U  L l l C  >LIGILIIG" cApu,lclrrr*.r ur;ca.y L.ll*ldL.LCill>LLL U L  LUC FLIM L", 

PFBM(k,t)  = e x p - D k 2 t 2 / d w ) .  

Notice that for d, = 2, the latter reduces to the exponential decay of regular 
Brownian motion. We conclude that (3.2) does not correspond to onedimensional 
FBM and a more general fractional equation is required to describe it. 

Nevertheless, it is interesting to see how the asymptotic behaviour of the relaxation 
function Qd-(x)  is achieved for x -+ 00. Figure 1 shows the behaviour of the 
universal function ad-(x) for different values of d,. Notice that for d, > 2, U,- Y 
exp(-x) for small x, which corresponds to the stretched exponential behaviour of 
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1 0 - 4 h  \ 2.001 
l o - ’  1 on 10’ 

Figure I. Plot of the ‘universal‘ funaion qdw(z )  against z, for different nlum d ,  = 
2.5, 2.1, 2.05, 2.01 and 2. Notice that for sufficiently large z, the a w e s  lend to the 
asymptolic result ~ u , ~ ( I )  .-. 1 f z ,  while far suniciently mall I they mincide with the 
standard result W2(z) = exp(-z). 

PFBM(k,t) as a function of t. Asymptotically, W,-(x) - 1/x as expected from 
(4.6). 

The result (4.3) has been obtained recently in the study of the electrochemical 
response of rough electrodes by de Levie and Vogt [19]. Their result follows from the 
empirical observation that the effective AC impedance Z,,(w) of a rough electrode 
(per unit of macroscopic electrode area) in contact with an electrolyte solution can 
be represented as 

Z,,(w) = R, + constant(iwC)-Q (4.7) 

where w is the frequency, R, the series resistance per unit apparent electrode area, 
C the capacitance and 0 < Q < 1 is an exponent describing the electrode-electrolyte 
interfacial roughness (Q = 1 for flat interfaces). They calculated the apparent current 
density I ( t )  following a small-amplitude voltage step of amplitude V, which can be 
obtained from the impedance by the relation 

I(1) = VL-l{ l / sze l ( s ) )  (4.8) 
where L-I denotes an inverse Laplace transform, and Z,,(s) is obtained from Z,,(W) 
by replacing iw by s. Combining (4.7) and (4.8), they find 

(4.9) 

where I ( 0 )  = V / R ,  and a = constant/(R,C*). Equation (4.9) is essentially our 
result (4.4), with I ( t ) / I ( O )  P ( k , t )  and a = 2 / d , .  The possible connection 
benveen our fractional ca1cuIus approach for diffusion and the AC response of such 
rough electrodes remains an intriguing question for future studies. 

In order to explore the applicability of fractional calculus in other cases, we 
consider subsequently the standard diffusion equation on fractals and derive the 
fractional equations for that case. This will lead us to a more general form of 
(3.2) and to a better understanding of the physics described by fractional equations. 
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5. Standard dlffuslon equation on fractals 

O'Shaughnessy and Procaccia [lo] have proposed a diffusion equation on fractals for 
the spherically symmetric case of the form 

M Giona and H E Roman 

with a position dependent diffusion coefficient D(r) = ( r 2 ( t ) ) / 2 t  = D,r-O, B = 
d ,  - 2, and the constitutive equation j ( r , t )  = - D ( r ) a P , , ( r , t ) / a r .  The solution 
of (5.1) can be obtained exactly [lo] 

(5.2) 
A 

t d . / 2  
P O p ( r , t )  = -e~y[-constant(r /R)~ ' ]  

where A > 0 and d, = 2 d , / d ,  is the spectral or fracton dimension [m]. As we men- 
tioned in the introduction, this standard approach leads, according to equation (5.2), 
to U' = d ,  in contrast with the stretched Gaussian form (1.2) with U = d , / ( d , -  1 ) .  
It may be remarked that (5.1) describes in general a Markovian process in an inho- 
mogeneous medium whose diffusion coefficient varies in space (see for instance van 
Kampen's book (211). 

From (5.1), the corresponding fractional equation can be obtained by looking for 
a relation between j ( r , t )  and a time derivative of P o p ( r , t ) .  For simplicity, we 
consider the one-dimensional version of (5.1) in what follows, i.e. d,  = 1. Denoting 
the Laplace aansform of POP(r,t) by Pop(r,s), (5.1) becomes 

lb solve (5.3), let us define [ = ( 2 / ~ ) ( ~ ' / ~ " r ) ~ " / ~  and pop(p,s) = E V E ) ,  
where y = 1 - l / d , .  Then, (5.3) leads to the modified Bessel equation 

whose solution (satisfying the summability condition for T + CO) is given by z ( c )  = 
CK,( t ) ,  where I i ,  is the modified Bessel function of second kind. 

In the neighbourhood of T = 0, one has 

Pop(T,S) = C [ 1 +  a,?' + 0(F27)1  

and 

j ( r , s )  = - C I Z , ~ - ' [ ~ ~ - '  d c / d r  +o(E2' - ' )  

which are related by s 'POp(r ,s)  - j ( r , $ ) ,  Thus, the corresponding fractional 
equation becomes 
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for r + 0, where B > 0 is a constant. 
For r - CO, 

and 

poP(r,  s)  - ( ~ ' / ~ - r ) ' / ~  exp[-con~tant(s'l~-r)~-/Z]. (5.5) 

From the constitutive equation and (5.5) we find j ( r , s )  - s1/zr-e/2Pop(r ,s) ,  which 
leads to the fractional equation 

for r - CO, where B' > 0 is a constant. For simplicity, we have omitted in (5.6) 
a term - P(r, t ) /r l+( ' / ' ) ,  which is required to obtain the prefactor ( s ~ / ~ - T ) ' / ~  in 
(5.5). Such terms will not be considered here because they do not modify the form of 
the exponential factor of P ( r ,  t ) ,  for r / R  + CO. It is precisely such an exponential 
factor to which we draw our attention in the present work. 

As we can see from these results, the standard equation (5.1) (d, = 1) corresponds 
to different fractional equations (5.4) and (5.6), depending on the range of T under 
consideration. For r + 0, the fractional equation is anomalous, i.e. y = l - l / d w  > $ 
for d, > 2, while for r -+ CO it becomes similar to the regular equation (2.4), y = $. 
In both cases, however, there exists an extra position-dependent factor T-", with 
6" = 0 (equation (5.4)) and 8' = 0/2 (equation (5.6)). From (5.4) and (5.6), we are 
thus led to consider the more general fractional equation 

(5.7) 

which includes (24), (3.2), (5.4) and (5.6) as particular cases. lb see how (5.7) 
actually works, we study in the next section the solutions of (5.7) in detail. 

6. Asymptotic fractional diflusion equation 

Let us consider an isotropic and homogeneous random fractal structure embedded in 
a ddimensional Euclidean system. We wish to find out to what extent the fractional 
equation 

in the spherically symmetric case, can describe the essential features of the aver- 
age function P ( r , t )  for diffusion on fractals. Equation (6.1) is obtained from the 
constitutive equation 
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where 8' > 0 in general and A > 0 is a constant. We adopt the mnvention that by 
integrating over r, the differential element of volume is given by 

M Giona and H E  Roman 

d V ( r )  = ArdI-'dr 

where d, is the fractal dimension of the structure and A is a constant The normal- 
ization condition for the probability is then written as A s," d r  rd*-'P(r ,  t) = 1. 

Denoting the Laplace transform of P ( r ,  1 )  by P ( r ,  s) and proceeding as in the 
solution of (3.3) we obtain from (6.1) 

C s"rl+!J' 

P( r ,  s )  = S l - d v r ' / ( l + E ' )  [- A( 1 + 891 

where c = (1 + e')/{A[A(l+ e')ldf/(1+%ydl/(l + e ' ) ) } .  
The two parameters y' and 8' in (6.2) are not independent of each other. A 

relation between them is obtained by requiring that J:drrd f - ' raP(r , t )  .., tald-.  
This condition yields 

1 -- - -. Y' 
1 +e' d, 

In accordance with (6.3), we can write (6.2) as 

In order to obtain P ( r , t ) ,  the inverse Laplace transform of (6.4) needs to be 
evaluated. The asymptotic behaviour of P ( r ,  t),  however, can be derived analytically 
by conventional methods. TI this end, we assume the following scaling form for 
P ( r , t ) ,  

P ( r ,  t )  - t -dJ2  exp -constant - [ (J] 
when t - CO and r / R  >> 1,  and evaluate the Laplace transform of (6.S), P ( r , s ) ,  
by using the steepest descent technique. Comparison with (6.4) yields 1 + 8' = 
u'd,/(u' + d,), or equivalently 

This result can be compared with the corresponding functions discussed in sec- 
tions 3 and 5. For the FBM, for instance, one has U' = 2 from (3.1). and, according 
to (6.6) 8' = (d ,  - 2 ) / ( d ,  + 2), while y' = 2 / ( d ,  + 2) from (6.3). We now see 
how our fractional equation (3.2) has to be modified in order that its asymptotic 
solution reproduces the FBM result (3.1). Also, comparing the exact solution (5.2) 
of the standard diffusion equation on fractals @I), U' = d,, with (6.6) we find 
8' = (d ,  - 2)/2 = 8 / 2  and y' = i, as obtained in (5.6). 
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We see that the differential equation (6.1) is quite general and can describe 
asymptotically the FBM results and the standard diffusion equation on fractals. For 
a more general application of (6.1) to fractals, one of the two parameters y' or 0' 
remains to be determined in the equation. This degree of freedom is at the heart of 
the approach and means that, in principle, all the fractional equations (6.1) having 
different parameters y' and 8' compatible with (6.3) should be taken into account 
for a complete description of anomalous dynamical processes on fractals. 

For many practical applications, however, one is not interested in all the details 
of the transport process. Our discussion thus turns to the solution of one fractional 
equation which proves to play a prominent role in this approach. ?his equation & 
obtained when 8' = 0,  implying y' = l /dw,  which leads to the simplest form of (6.1). 
In this case, the radial current j ( r , t )  is related to the radial derivative of P ( r , t )  
(constitutive equation) simply by 

as for diffusion in regular systems (equation (2.2)) (first Fick's law), while the anoma- 
lies in the diffusion process are taken into account by the fractional time derivative 
of P ( r , t ) .  We thus arrive at the fractional equation 

which we denote as the asymptotic fractional diffusion equation on fractals. 
Both the anomalous diffusion exponent d, and the parameter A in (6.8) can 

be determined from the mean-sauare disolacement ( r2 ( t l ) .  which is assumed as > ~ ,,. 
known and obeying ( r 2 ( t ) )  = B t 2 I d - .  A simple calculation then yields A = [ r ( l  + 
2 / 4 ) / ( 4 ( 1  + dO)1'/2B1/2. 

The asymptotic solution of (6.8), for t - cc and r / R  + CO, is given by the 
slrelched Gaussian 

P(r,t) - p ( 0 , t )  exp [-constant (;)U] (6.9) 

with 

dW U=- 
d, - 1 

which corresponds to the lowest mlue of 71' in (6.6)t. Within our approach, (6.8) 
determines the asymptotic behaviour for the whole family of fractional equations, 
since the solutions of (6.1) for 8' > 0 decay much faster than (6.9) for r / R  - 03. 

(For an heuristic derivation of (6.8) we refer to [D]) .  Thus, our result (6.9) reproduces 
the accepted stretched Gaussian result (1.2) for diffusion on fractals. 

t Qualion (6.9) contains an am factor of h e  form f ( r )  5 so, where z = P/R and a = u(d,-1)/2.  
Far more &tails see PZ]. 
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I. Concluding remarks 

We have proposed a generalization of the standard diffusion equation for describ- 
ing transport phenomena in complex media such as random fractal structures. The 
new equation, obtained within the framework of the fractional calculus, represents a 
promising tool for studying anomalous transport behaviour in these random media. 

The present fractional calculus method constitutes a significant change in the usual 
approach to the problem. In the formulation of the standard diffusion equation on 
fractals for instance, one usually starts from the continuity equation (2.1) and modifies 
the constitutive equation (2.2) in order to satisfy the expected scaling for the mean- 
square displacement (1.1) [IO]. Our approach consists essentially in keeping unaltered 
the constitutive relation between the (radial) current and particle concentration P, 
while the anomalies of the diffusion process are described by a non-integer (fractional) 
temporal derivative of P .  This is equivalent to an integro-differential equation for 
P, which in practice is solved by standard Laplace transformations. The solution of 
the equation is obtained analytically and reproduces the asymptotic behaviour of the 
probability density function on random fractals such as the infinite percolation cluster 
at criticality. 
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Appendix. Mathematical background 

The fractional derivative of order q (for real q )  of a function f (x)  with respect to 
z - xo is defined as [12], 

It can be shown that, for q = n, (n  positive integer), (Al) reduces to the usual 
derivative of order n. For q = n (n  negative integer), it corresponds to the multiple 
integral of order n. 

Definition (Al) corresponds to the integral representation 

where n ( q )  is the smallest non-negative integer so that 

9 - n(q )  < 0.  

Of course, if q < 0 ,  n ( q )  = 0. Definition (A2) can be written formally as 

dx9 
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From (A2) and (M), we have for 0 < q < 1, taking zo = 0 without loss of 
generality, that 

The Laplace transform L[dqf(+)/drq] of dqf(z)/dzq can be obtained from 
(A2) and (A4) by applying the convolution theorem, and 

If the initial conditions for the derivatives of f(z), dq-'-Jf(O)/dzq-'-j = 0 (j = 
0 ,  ..., n(q)-1) ,  then 

L [-] = s q L [ f ]  

for all q, 
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